Regulation of the epithelial sodium channel by accessory proteins.

نویسندگان

  • Kelly Gormley
  • Yanbin Dong
  • Giuseppe A Sagnella
چکیده

The epithelial sodium channel (ENaC) is of fundamental importance in the control of sodium fluxes in epithelial cells. Modulation of sodium reabsorption through the distal nephron ENaC is an important component in the overall control of sodium balance, blood volume and thereby of blood pressure. This is clearly demonstrated by rare genetic disorders of sodium-channel activity (Liddle's syndrome and pseudohypoaldosteronism type 1), associated with contrasting effects on blood pressure. The mineralocorticoid aldosterone is a well-established modulator of sodium-channel activity. Considerable insight has now been gained into the intracellular signalling pathways linking aldosterone-mediated changes in gene transcription with changes in ion transport. Activating pathways include aldosterone-induced proteins and especially the serum- and glucocorticoid-inducible kinase (SGK) and the small G-protein, K-Ras 2A. Targeting of the ENaC for endocytosis and degradation is now emerging as a major mechanism for the down-regulation of channel activity. Several proteins acting in concert are an intrinsic part of this process but Nedd4 (neural precursor cell expressed developmentally down-regulated 4) is of central importance. Other mechanisms known to interact with ENaC and affect sodium transport include channel-activating protease 1 (CAP-1), a membrane-anchored protein, and the cystic fibrosis transmembrane regulator. The implications of research on accessory factors controlling ENaC activity are wide-ranging. Understanding cellular mechanisms controlling ENaC activity may provide a more detailed insight not only of ion-channel abnormalities in cystic fibrosis but also of the link between abnormal renal sodium transport and essential hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

Taking ion channel degradation to heart.

A balance between synthesis and degradation of cellular proteins is of natural importance to regulation of protein levels and necessary to retain viability of living cells. Protein degradation often occurs via targeting through ubiquitination and subsequent decomposition in the cellular proteasome [1]. Some other pathways may either not utilize ubiquitination or degrade proteins via lysosomal c...

متن کامل

Breviscapine prevents downregulation of renal water and sodium transport proteins in response to unilateral ureteral obstruction

Objective(s):Our recent report indicates that breviscapine play a protective role of the kidney by down-regulating transforming growth factor-β1(TGF-β1), α-smooth muscle actin (α-SMA) and alleviating interstitial fibrosis following unilateral ureteral obstruction (UUO). In this study, we investigate the effect of breviscapine on changes of renal water and sodium transport proteins in response t...

متن کامل

The identification of protein changes in Celeribacter persicus SBU1 after degrading phenanthrene

Organisms in different environmental conditions express different genes, which result in different protein expressions. These changes result from the adaptation of the organism to environmental conditions such as the presence of toxic substances. This study aimed to investigate the changes in protein expression in Celeribacter persicus SBU1 isolated from Nayband Bay mangrove forests, cultured i...

متن کامل

Sensing tension: epithelial sodium channel/acid-sensing ion channel proteins in cardiovascular homeostasis.

The epithelial sodium (Na ) channel (ENaC) plays a critical role in blood pressure regulation by controlling renal salt and water reabsorption. Channel overactivity can lead to severe hypertension and underactivity to salt wasting and hypotension.1 In addition to their role in salt/water homeostasis, recent studies suggest that ENaC proteins, and their relatives, the acid-sensing ion channel (A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 371 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003